Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Surg ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38446845

RESUMO

BACKGROUND: Omentoplasty is commonly used in various surgeries. However, its effectiveness is unsure due to lack of convincing data and research. To clarify the impact of omentoplasty on postoperative complications of various procedures, this systematic review and meta-analysis was performed. METHODS: A systematic review of published literatures from four databases: PubMed, Web of Science, Cochrane Library, and Embase before July 14, 2022. We primarily included publications on five major surgical operations performed in conjunction with omentoplasty: thoracic surgery, esophageal surgery, gastrointestinal surgery, pelvi-perineal surgery, and liver surgery. The protocol was registered in PROSPERO. RESULTS: This review included 25 273 patients from 91 studies (n=9 670 underwent omentoplasty). Omentoplasty was associated with a lower risk of overall complications particularly in gastrointestinal (RR 0.53; 95%CI 0.39-0.72) and liver surgery (RR 0.54; 95%CI 0.39-0.74). Omentoplasty reduced the risk of postoperative infection in thoracic (RR 0.38; 95%CI 0.18-0.78) and liver surgery (RR 0.39; 95%CI 0.29-0.52). In patients undergoing esophageal (RR 0.89; 95%CI 0.80-0.99) and gastrointestinal (RR 0.28; 95%CI 0.23-0.34) surgery with a BMI greater than 25, omentoplasty is significantly associated with a reduced risk of overall complications compared to patients with normal BMI. No significant differences were found in pelvi-perineal surgery, except infection in patients whose BMI ranged from 25 kg/m2 to 29.9 kg/m2 (RR 1.25; 95%CI 1.04-1.50) and anastomotic leakage in patients aged over 60 (RR 0.59; 95%CI-0.39-0.91). CONCLUSION: Omentoplasty can effectively prevent postoperative infection. It is associated with a lower incidence of multiple postoperative complications in gastrointestinal and liver surgery.

2.
Sci Total Environ ; 921: 170911, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354796

RESUMO

Elucidation of the catalytic decomposition mechanism of dioxins is pivotal in developing highly efficient dioxin degradation catalysts. In order to accurately simulate the whole molecular structure of dioxins, two model compounds, o-dichlorobenzene (o-DCB) and furan, were employed to represent the chlorinated benzene ring and oxygenated central ring within a dioxin molecule, respectively. Experiments and Density Functional Theory (DFT) calculations were combined to investigate the adsorption as well as oxidation of o-DCB and furan over MnOx-CeO2/TiO2 catalyst (denoted as MnCe/Ti). The results indicate that competitive adsorption exists between furan and o-DCB. The former exhibits superior adsorption capacity on MnCe/Ti catalyst at 100 °C - 150 °C, for it can adsorb on both surface metal atom and surface oxygen vacancies (Ov) via its O-terminal; while the latter adsorbs primarily by anchoring its Cl atom to surface Ov. Regarding oxidation, furan can be completely oxidized at 150 °C - 300 °C with a high CO2 selectivity (above 80 %). However, o-DCB cannot be totally oxidized and the resulting intermediates cause the deactivation of catalyst. Interestingly, the pre-adsorption of furan on catalyst surface can facilitate the catalytic oxidation of o-DCB below 200 °C, possibly because the dissociated adsorption of furan may form additional reactive oxygen species on catalyst surface. Therefore, this work provides new insights into the catalytic decomposition mechanism of dioxins as well as the optimization strategies for developing dioxin-degradation catalysts with high efficiency at low temperature.

3.
Front Neurol ; 15: 1262057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385037

RESUMO

Objective: This research aims to investigate whether peripheral biomarkers might differentiate individuals with Tourette syndrome (TS) from those without the condition. Methods: A broad range of databases was searched through November 2022. This study employed a systematic literature review and subsequent meta-analysis of case-control studies that assessed the aberration of biomarkers of patients with TS and controls. Results: A total of 81 studies were identified, out of which 60 met the eligibility criteria for inclusion in the meta-analysis. Following a meticulous screening procedure to determine the feasibility of incorporating case-control studies into the meta-analysis, 13 comparisons were statistically significant [CD3+ T cell, CD4+ T cell, CD4+ T cell to CD8+ T cell ratio, NK-cell, anti-streptolysin O antibodies, anti-DNase antibodies, glutamic acid (Glu), aspartic acid (Asp), ferritin (Fe), zinc (Zn), lead (Pb), vitamin D, and brain-derived neurotrophic factor (BDNF)]. Publication bias was found for anti-streptolysin O antibodies. Suggestive associations were evidenced for norsalsolinol (NSAL), neuron-specific enolase (NSE), and S100B. Conclusion: In this study, we present empirical evidence substantiating the link between several peripheral biomarkers and the early diagnosis of TS. Larger and more standardized studies are necessary to replicate the observed results, elucidate the specificity of the biomarkers for TS, and evaluate their precision for use in clinical settings.

4.
Plant Cell Environ ; 47(3): 871-884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164043

RESUMO

Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.


Assuntos
Soja , Rhizobium , Nodulação , Substâncias Húmicas , Fixação de Nitrogênio , Etilenos/metabolismo , Imunidade Vegetal , Simbiose , Nódulos Radiculares de Plantas/microbiologia
5.
Environ Res ; 242: 117799, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042521

RESUMO

The use of municipal solid waste incineration fly ash, commonly referred to as "fly ash", as a supplementary cementitious material (SCM), has been explored to mitigate the CO2 emissions resulting from cement production. Nevertheless, the incorporation of fly ash as an SCM in mortar has been shown to weaken its compressive strength and increase the risk of heavy metal leaching. In light of these challenges, this study aims to comprehensively evaluate the influence of CO2 pressure, temperature, and residual water/binder ratio on the CO2 uptake and compressive strength of mortar when combined with fly ash. Additionally, this study systematically examines the feasibility of mechanochemical pretreatment, which enhances the homogenization of fly ash and augments the density of the mortar's microstructure. The results indicate that the use of mechanochemical pretreatment leads to a notable 43.6% increase in 28-day compressive strength and diminishes the leaching of As, Ba, Ni, Pb, Se, and Zn by 17.9-77.8%. Finally, a reaction kinetics model is proposed to elucidate the CO2 sequestration process under varying conditions. These findings offer valuable guidance for incorporating fly ash as an SCM and CO2 sequestrator in mortar.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão , Dióxido de Carbono , Incineração , Metais Pesados/análise , Carbono , Eliminação de Resíduos/métodos , Material Particulado
7.
Sci Total Environ ; 912: 169482, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135065

RESUMO

The process of urbanization has resulted in a continuous growth of the production of municipal solid waste, consequently leading to the increase of municipal solid waste incineration fly ash (MSWI FA) over time. This has prompted the need for effective disposal and value-added utilization strategies for MSWI FA. In this study, a hydrothermal method was employed to synthesize CaAl layered double hydroxides (LDHs) using MSWI FA as the raw material. The main objective was to investigate how different synthesis parameters affect the crystallinity of the layered bimetallic hydroxides. Subsequently, the synthesized LDHs were characterized using various techniques such as BET, SEM, XRD, FT-IR, and XPS. The results revealed the presence of calcium and aluminum cations in the interlayer region of the synthesized material, with chloride ions, sulfate ions, and acetate ions being the predominant anions. Moreover, the formation of LDHs presents an effective approach for the self-purification of leachates derived from MSWI FA. The LDHs exhibited excellent adsorption capacity for Cd2+ and Cu2+ in wastewater, with maximum values of 730 mg·g-1 and 446 mg·g-1, respectively. The adsorption mechanisms involved isomorphous substitution, complexation, as well as the precipitation of hydroxides or interlayer anions. This method presents a novel approach for effectively utilizing MSWI FA to produce environmentally friendly value-added adsorbents.

8.
Environ Sci Pollut Res Int ; 30(57): 120355-120365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936051

RESUMO

Catalytic destruction of nitrogen oxides (NOx) combined with dust removal technique has attracted much attention, yet the application in the solid waste incineration air pollution control process is still lacking due to the complex flue gas atmosphere. In this work, the Mn-Ce-Co-Ox catalyst-coated polyphenylene sulfide (PPS) filter fiber with efficient dust removal and low-temperature polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) destruction has been prepared with a redox-precipitation method. The catalyst was uniformly grown around the PPS fiber with appropriate catalyst loading. The effects of several key operating parameters (e.g., reaction temperature, catalyst loading amount, and filtration velocity) on the catalytic efficiency were comprehensively investigated. The results show that the Mn-Ce-Co-Ox/PPS has a decomposition yield of 78.0% in PCDD/Fs and 96% in nitric oxide (NO) conversion at 200 °C. The poisoned catalytic filter exhibits a removal efficiency of 88.6% for PCDD/Fs. In addition, the catalytic filter can completely reject particles smaller than 1.0 µm with a low filtration resistance. Therefore, this efficient and energy-conserving catalytic filter shows promising applications in flue gas pollution treatments.


Assuntos
Poluentes Atmosféricos , Dibenzodioxinas Policloradas , Dibenzofuranos Policlorados , Dibenzodioxinas Policloradas/análise , Dibenzofuranos , Temperatura , Óxido Nítrico , Poeira , Oxirredução , Incineração/métodos
9.
Eur J Immunol ; 53(10): e2149510, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572379

RESUMO

Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.


Assuntos
Asma , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Asma/terapia , Asma/metabolismo , Imunomodulação
10.
Stem Cell Res Ther ; 14(1): 180, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488601

RESUMO

BACKGROUND: Mesenchymal stromal cells-derived small extracellular vesicles (MSC-sEVs) have recently attracted considerable attention because of their therapeutic potential in various immune diseases. We previously reported that MSC-sEVs could exert immunomodulatory roles in allergic airway inflammation by regulating group 2 innate lymphoid cell (ILC2) and dendritic cell (DC) functions. Therefore, this study aimed to investigate the indirect effects of MSC-sEVs on ILC2s from patients with allergic rhinitis (AR) via DCs. METHODS: Here, we isolated sEVs from induced pluripotent stem cells-MSCs using anion-exchange chromatography and mature DCs (mDCs) were treated with MSC-sEVs. sEV-mDCs were co-cultured with peripheral blood mononuclear cells from patients with AR or purified ILC2s. The levels of IL-13 and GATA3 in ILC2s were examined by flow cytometry. Bulk RNA sequence for mDCs and sEV-mDCs was employed to further probe the potential mechanisms, which were then validated in the co-culture systems. RESULTS: sEV-mDCs showed impaired capacity in priming the levels of IL-13 and GATA3 in ILC2s when compared with mDCs. Furthermore, there was higher PGE2 and IL-10 production from sEV-mDCs, and the blockade of them especially the former one reversed the inhibitory effects of sEV-mDCs. CONCLUSIONS: We demonstrated that MSC-sEVs were able to dampen the activating effects of mDCs on ILC2s in patients with AR. Mechanismly, the PGE2-EP2/4 axis played an essential role in the immunomodulatory effects of sEV-mDCs on ILC2s. Herein, we provided new insights into the mechanism underlying the therapeutic effects of MSC-sEVs in allergic airway inflammation.


Assuntos
Vesículas Extracelulares , Rinite Alérgica , Humanos , Imunidade Inata , Dinoprostona , Interleucina-13 , Leucócitos Mononucleares , Linfócitos , Inflamação , Células Dendríticas
11.
J Environ Manage ; 345: 118669, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506443

RESUMO

Incineration technology has been widely adopted to safely dispose of hazardous waste (HW). While the incineration process causes the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Due to its extreme toxicity, many scholars have been committed to determining the PCDD/F formation process and reducing emissions in incinerators. Previous studies ignored the impact of incineration and fluctuation of feeding materials on PCDD/F formation in hazardous waste incinerators (HWIs). In this study, differences in PCDD/F formation between HWIs and municipal solid waste incinerators (MSWIs) were pointed out. The incineration section in HWIs should be carefully considered. Laboratory experiments, conventional analysis and thermogravimetry experiments were conducted. An obvious disparity of PCDD/F formation between 12 kinds of HWs was found. Distillation residue was found with remarkably higher PCDD/F concentrations (11.57 ng/g). Except for the Cl content, aromatic rings and C-O bond organics were also found with high correlation coefficients with PCDD/F concentrations (>0.92). And PCDD/Fs were formed through a chlorination process and structure formation process. All of these are helpful to further understand the PCDD/F formation process during HW incineration, optimize the operation conditions in HWIs and reduce the emission pressure of PCDD/Fs in the future.


Assuntos
Poluentes Atmosféricos , Dibenzodioxinas Policloradas , Dibenzofuranos/análise , Incineração , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/química , Dibenzofuranos Policlorados/análise , Dibenzofuranos Policlorados/química , Resíduos Perigosos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Resíduos Sólidos/análise
12.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367374

RESUMO

It was reported that temperature affects the distribution of Wolbachia in the host, but only a few papers reported the effect of the interaction between high temperature and Wolbachia on the biological characteristic of the host. Here, we set four treatment Drosophila melanogaster groups: Wolbachia-infected flies in 25 °C (W+M), Wolbachia-infected flies in 31 °C (W+H), Wolbachia-uninfected flies in 25 °C (W-M), Wolbachia-uninfected flies in 31 °C (W-H), and detected the interaction effect of temperature and Wolbachia infection on the biological characteristic of D. melanogaster in F1, F2 and F3 generations. We found that both temperature and Wolbachia infection had significant effects on the development and survival rate of D. melanogaster. High temperature and Wolbachia infection had interaction effect on hatching rate, developmental durations, emergence rate, body weight and body length of F1, F2 and F3 flies, and the interaction effect also existed on oviposition amount of F3 flies, and on pupation rate of F2 and F3 flies. High temperature stress reduced the Wolbachia vertical transmission efficiency between generations. These results indicated that high temperature stress and Wolbachia infection had negative effects on the morphological development of D. melanogaster.

13.
Plant Commun ; 4(6): 100627, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37208896

RESUMO

Soybean (Glycine max) forms root nodules to house rhizobial bacteria for biological nitrogen fixation. The development of root nodules is intricately regulated by endogenous and exogenous cues. The phytohormones brassinosteroids (BRs) have been shown to negatively regulate nodulation in soybean, but the underlying genetic and molecular mechanisms remain largely unknown. Here, we performed transcriptomic analyses and revealed that BR signaling negatively regulates nodulation factor (NF) signaling. We found that BR signaling inhibits nodulation through its signaling component GmBES1-1 by dampening NF signaling and nodule formation. In addition, GmBES1-1 can directly interact with both GmNSP1 and GmNSP2 to inhibit their interaction and the DNA-binding activity of GmNSP1. Furthermore, BR-induced nuclear accumulation of GmBES1-1 is essential for inhibiting nodulation. Taken together, our results demonstrate that regulation of GmBES1-1 subcellular localization by BRs plays a key role in the legume-rhizobium symbiosis and plant development, indicating a crosstalk mechanism between phytohormone and symbiosis signaling pathways.


Assuntos
Fabaceae , /genética , /microbiologia , Brassinosteroides/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo
14.
Ecol Evol ; 13(4): e10024, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082325

RESUMO

Behavioral plasticity is of great significance because it allows individuals to flexibly respond to variations in the ecological and social environment. To date, there is little published data on the topic of whether the early rearing experience of spiders influences their later foraging behavior. Pardosa pseudoannulata (Araneae: Lycosidae) is a solitary wolf spider, it is a major predator of pests such as Nilaparvata lugens in rice fields. In this study, we aim to develop a communal rearing protocol for spiders. We conducted a rearing study in the lab that one group of wolf spiders was reared communally and a second group was reared individually. We compared the survival rates and predatory capacity of P. pseudoannulata in both settings. Survival rates were similar overall. At forty-five days, survival rates were below 40% for both groups. Raising spiders communally led to higher foraging levels. Across all tested time points, spiders reared communally hunted more fruit flies than those reared individually. Significant differences were found between the two rearing groups after hunting for seven and 10 min. Field experiment showed that release of communal-reared spiders significantly reduced the pest N. lugens population. Our research provides reference for the large-scale breeding of spiders and their application as biological control agents.

15.
J Allergy Clin Immunol ; 151(2): 469-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464527

RESUMO

BACKGROUND: The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. OBJECTIVE: We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. METHODS: Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. RESULTS: The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. CONCLUSIONS: The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage.


Assuntos
Detergentes , Células Epiteliais , Humanos , Detergentes/metabolismo , Células Epiteliais/metabolismo , Trato Gastrointestinal , Regulação para Cima , RNA/metabolismo , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo
16.
Science ; 378(6623): 971-977, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454840

RESUMO

Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean (Glycine max) cystathionine ß-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.


Assuntos
Fixação de Nitrogênio , Nitrogênio , Fosfoenolpiruvato , Proteínas de Plantas , Nódulos Radiculares de Plantas , Nitrogênio/metabolismo , Fosfoenolpiruvato/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Cistationina beta-Sintase , Domínios Proteicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
aBIOTECH ; 3(2): 99-109, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36312443

RESUMO

Native promoters that can drive high and stable transgene expression are important tools for modifying plant traits. Although several such promoters have been reported in soybean (Glycine max), few of them function at multiple growth and development stages and during nodule development. Here, we report that the promoters of 40S RIBOSOMAL PROTEIN SMALL SUBUNIT S28 (RPS28) and EUKARYOTIC TRANSLATION INITIATION FACTOR 1 (EIF1) are ideal for high expression of transgene. Through bioinformatic analysis, we determined that RPS28 and EIF1 were highly expressed during soybean growth and development, nodule development, and various biotic and abiotic stresses. Fusion of both RPS28 and EIF1 promoters, with or without their first intron, with the reporter gene ß-GLUCURONIDASE (uidA) in transgenic soybean, resulted in high GUS activity in seedlings, seeds, and nodules. Fluorimetric GUS assays showed that the RPS28 promoter and the EIF1 promoter yielded high expression, comparable to the soybean Ubiquitin (GmUbi) promoter. RPS28 and EIF1 promoters were also highly expressed in Arabidopsis thaliana and Nicotiana benthamiana. Our results indicate the potential of RPS28 and EIF1 promoters to facilitate future genetic engineering and breeding to improve the quality and yield of soybean, as well as in a wide variety of other plant species. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-022-00073-6.

18.
Environ Pollut ; 314: 120261, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155219

RESUMO

The control of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the flue gas in hazardous waste incinerators (HWIs) is an intractable problem. To figure out the formation mechanism of PCDD/Fs and reduce the emission, a field study was carried out in a full-scale HWI. Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4 were injected into the quench tower, and the detailed inhibition effect on PCDD/Fs formation by the inhibitors coupled with quench tower was studied. Gas and ash samples were collected to analyze PCDD/Fs. XPS, EDS characterization and Principal component analysis were adopted to further analyze the de novo and precursors synthesis. The PCDD/Fs emissions reduced from 0.135 ng I-TEQ/Nm3 to 0.062 or 0.025 ng I-TEQ/Nm3 after the injection of Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4, respectively. The quench tower was found mainly hindering de novo synthesis by reducing reaction time. CP-route was the dominant formation pathway of PCDD/Fs in quench tower ash. Ca(OH)2 & (NH4)H2PO4 effectively inhibit precursors synthesis and reduce proportions of organic chlorine from 4.11% to 2.86%. CH4N2S & (NH4)H2PO4 show good control effects on both de novo and precursors synthesis by reducing chlorine content and inhibiting metal-catalysts. Sulfur-containing inhibitors can cooperate well with the quench tower to inhibit PCDD/Fs formation and will be effective to reduce dioxins formation in high chlorine flue gas. The results pave the way for further industrial application of inhibition to reduce PCDD/Fs emissions in the HWIs flue gas.


Assuntos
Poluentes Atmosféricos , Benzofuranos , Dioxinas , Dibenzodioxinas Policloradas , Resíduos Perigosos/análise , Dibenzofuranos/análise , Dibenzodioxinas Policloradas/análise , Dioxinas/análise , Cloro/análise , Poluentes Atmosféricos/análise , Benzofuranos/análise , Monitoramento Ambiental , Incineração/métodos , Enxofre/análise , Dibenzofuranos Policlorados/análise
19.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806374

RESUMO

Alternative splicing (AS) is a ubiquitous phenomenon among eukaryotic intron-containing genes, which greatly contributes to transcriptome and proteome diversity. Here we performed the isoform sequencing (Iso-Seq) of soybean underground tissues inoculated and uninoculated with Rhizobium and obtained 200,681 full-length transcripts covering 26,183 gene loci. It was found that 80.78% of the multi-exon loci produced more than one splicing variant. Comprehensive analysis of these identified 7874 differentially splicing events with highly diverse splicing patterns during nodule development, especially in defense and transport-related processes. We further profiled genes with differential isoform usage and revealed that 2008 multi-isoform loci underwent stage-specific or simultaneous major isoform switches after Rhizobium inoculation, indicating that AS is a vital way to regulate nodule development. Moreover, we took the lead in identifying 1563 high-confidence long non-coding RNAs (lncRNAs) in soybean, and 157 of them are differentially expressed during nodule development. Therefore, our study uncovers the landscape of AS during the soybean-Rhizobium interaction and provides systematic transcriptomic data for future study of multiple novel directions in soybean.


Assuntos
Processamento Alternativo , RNA Longo não Codificante , Perfilação da Expressão Gênica , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , /metabolismo , Transcriptoma
20.
iScience ; 25(5): 104321, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602951

RESUMO

This review discusses physical, chemical, and direct lithium-ion battery recycling methods to have an outlook on future recovery routes. Physical and chemical processes are employed to treat cathode active materials which are the greatest cost contributor in the production of lithium batteries. Direct recycling processes maintain the original chemical structure and process value of battery materials by recovering and reusing them directly. Mechanical separation is essential to liberate cathode materials that are concentrated in the finer size region. However, currently, the cathode active materials are being concentrated at a cut point that is considerably greater than the actual size found in spent batteries. Effective physical methods reduce the cost of subsequent chemical treatment and thereafter re-lithiation successfully reintroduces lithium into spent cathodes. Some of the current challenges are the difficulty in controlling impurities in recovered products and ensuring that the entire recycling process is more sustainable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...